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ABSTRACT 

This paper presents a high-stability frequency 
modulation (FM) technique for a difference equation 
oscillator. The modulating frequency used here is an 
audio frequency signal, though it is possible to use also 
a signal below audible frequency band, or a "hidden" 
signal that is not connected to audio output. General 
operating principle as well as specific equations of the 
implementation are presented. External excitation has a 
crucial role in audio sound production. 

In the beginning of the paper, is given a short 
introduction to classic sound synthesis techniques, and a 
short overview of sound analysis history in general is 
presented. Then a quick look is taken at some novel 
techniques. The meaning of noise component and 
variations in sound are highlighted. The operation of the 
proposed technique and its implementation are 
explained in detail. 

Finally, the applications made during the 
experimentation are introduced: Plucked string, bell and 
gong. Several topologies have been evaluated. Results 
are reported, including notes about accuracy and 
limitations. 

Keywords: Digital Audio Signal Processing, Sound 
Synthesis. 

1. INTRODUCTION 

We usually want to use computationally efficient 
methods for digital audio signal processing. But can the 
used method direct the results too much? 

As early as in the 19th century mathematics had 
advanced so far that it was capable, in principle, to 
calculate almost any vibrations of arbitrary objects. But, 
in practice, scientists were interested to observe and 
analyse the “pure” harmonic components of the sound – 
and, furthermore, in a quite static way in respect to time. 
And, also, the “impurities” and variations as function of 
time were neglected as “uninteresting” [6; 7]. 

Still, in the 1950s, the coming computer music audio 
technology started by using additive synthesis (of 
harmonic partials). However, it became soon evident 
from the early experiments that the sounds thus 
generated did not sound very natural [4]. 

Quickly the so-called classic computer synthesis 
techniques, that included also subtractive, frequency 
modulation (FM) and granular synthesis – in addition to 
the already mentioned additive synthesis – brought 
variation and sense of naturalness to the resulting sound 

output [1]. 
Lately, there has been many further improvements in 

methods, e.g. digital waveguides [5], just to mention 
one. However, often there appears some kind of 
drawback that comes with the specialized efficiency of 
the method, e.g. one architecture and number of 
dimensions suits to model one real instrument, but 
another requires heavy modifications to the model to be 
perceived genuine enough. 

Yet, authentic-sounding natural variations in sound – 
and the “noisy” part of the sound – have been a tough 
(and computationally expensive) challenge for realistic 
sound synthesis – in spite of the fact that, in theory, you 
can form any possible sound from simple sine wave 
components. (However, there are good analysis-
resynthesis techniques [8], but they do not provide new 
sounds, unless you change something in the resynthesis 
phase to alter the characteristics1.) 

This paper will present one special method – not very 
efficient, but what may bring interesting results. We will 
first take a look into general operating principle, and 
then continue to the mechanism that produces variations 
to the sound. 

2. THE DIFFERENCE EQUATION 
RESONATOR 

The Figure 1 below shows the reference model of a 
basic differential equation oscillator, (similar to what 

you find in any elementary tutorial of mechanical 
vibrations, e.g. in [2; 3]), where m is mass, k is spring 
constant, F is force produced by the displacement and 

                                                           
1 (Or, if you “fail” in the resynthesis, what may also, accidentally, 
produce wonderful new sounds.) 

© Kari Väkevä            Status: Draft, Unpublished. 

 

 
Figure 1. Basic Mass-Spring Vibrator model 



  
 

 

spring, and v is velocity. When we mark the 
displacement by y, the equation (1) below shows the 
physical law of one-dimensional vibration: 

 
             F = - k y                                        (1) 

 
And when we mark acceleration with ÿ we can express 
the basic law of dynamics as 

 
m ÿ - F = 0.                                  (2) 

 

2.1. Free vibrations 

The basic reference model above showed the situation 
when the motion has been started and there are no 
resisting (or re-exciting) forces. Then the motion 
continues as pure harmonic (sinusoidal) motion of 
constant amplitude, that is called free vibration. 

2.2. Forced vibrations 

If there are forces affecting to the oscillating system 
during its vibration, the motion is not purely harmonic, 
and what is called forced vibration. 

2.3. The Difference Equation 

For the discrete-time version of the equation, (i.e. the 
implementation algorithm), we obtain1 that the 
displacement force is 
 

f = - k y[n-1] + e                                (3) 
 
where k is spring constant, y[n-1] is displacement and e 
is external excitation force; furthermore, we get the 
acceleration as 
 

a = f / m                                         (4) 
 
where m is mass; also we get the recalculated velocity 
(in displacement units per sampling interval) to be 
 

v[n]  = d v[n-1] + a                                 (5) 
 
where d is damping parameter (value range 0..1, the 
greater the value, the slower the decay); and, finally, we 
get the recalculated displacement numerical value to be 
 

y[n]  = y[n-1] + v[n]                                   (6) 
 
(with the above mentioned assumption that the velocity 
is expressed in displacement units per unit-time, and the 
unit-time is set equal to one sample interval, for 
efficiency of calculation). 

The external excitation force e is used for setting the 
vibrator system in motion, and it may be also used 

                                                           
1 (To save space, some steps about how we arrive to these final 
(optimized) equations (3), …, (6) are left out – as that is not the 
primary subject of this paper.) 

during the vibration to restrain the system from moving 
at its resonance frequency (or to keep the motion alive). 

3. FREQUENCY MODULATION (FM) 

We can implement frequency modulation (FM) into our 
model by altering the spring constant k according to a 
modulation signal. Note that the vibration amplitude 
increases when the frequency decreases (a trivial law of 
physics for those who have ever played any string 
instrument). Unfortunately, that method is very prone to 
instability. 

A safe way to implement the FM is described in 
Figure 2. The principle is that the difference equation 
calculation sequence is kept exactly same numerically 
also when there is FM applied. This is achieved by 

virtually modulating the sample frequency, instead. In 
(a) the frequency is doubled at time t1, therefore in the 
latter time interval T there are double the amount of 
cycles than in the former interval T. In (b) you see the 
change at time t1 in more detail: because output audio 
frequency was modulated to become higher, the sample 
frequency of calculation has to be increased. Set1 marks 
the samples that have to be calculated at time t1+1 to 
get a required output audio rate sample, and set2 the 
samples calculated at time t1+2. In (c) you see that you 
also have to interpolate between samples to get a 
smooth signal for output (i.e. when the ratio of the 
frequencies  is not a suitable integer), where X marks 

 
Figure 2. FM operating principle 



  
 

 

the interpolated sample for output between the 
difference equation sample points (p0, …, p4, etc., 
where we can call the line p0-p1 the first “segment”, 
and so on). Note that here, (unlike when modulating the 
spring constant k), the vibration amplitude remains 
naturally constant – what is actually musically desirable 
(because in real acoustic instruments you mostly 
perceive the force transferred through the bridge to the 
top plate of the instrument body that resonates and 
amplifies the sound; and changing the string stiffness 
does not change the vibrational energy of the string). In 
this safe way, implemented for the present 
experimentation, a “control frequency” (in Csound 
terminology) of equal to the audio output sample 
frequency was used for exchanging FM events between 
the resonator elements. However, the frequency of a 
resonator element may also be below the audible 
frequency range, or a “hidden” element (not connected 
to audio output) can be used for generating modulation 
control signal to other (audible) resonators. Note also, 
that the sample resolution decreases when FM lowers 
the frequency of a resonator (what must be kept in mind 
during the audio design). 

4. APPLICATIONS AND RESULTS 

For example, models resembling the following real 
instruments were experimented: Plucked string, bell and 
gong. A particular interest was to model different ways 
of interconnecting the resonator elements as a network, 
where they send and receive FM events to/from 
neighbour elements according to a defined topology. 
Several topologies of resonator networks were 
experimented, including linear array (plucked string 
physical model), and the 120-cell [9] (bell and gong 
models). The motivation for trying the 120-cell 
topology was to make an (artificial) resemblance to the 
physical construction of instruments, like the tubular 
bell, where there are numerous vibrational degrees of 
freedom, and an infinite number of closed-loop paths 
where the sound waves can propagate in a circular 
manner, thus also modifying the tension at all points of 
the instrument body (i.e. thus causing FM), at all times. 
Especially the bell and gong models gave interesting, 
rich timbres. 

The audio sounds provided by the technique are of 
some interest and novelty, but not, by any means, 
claimed to be a general solution for synthesizing every 
kind of sound, nor to come without limitations. The 
used method can direct the results, but can it direct too 
much? That the author leaves for the future to show. 

Below, in Figure 3, you see a curve that shows the 
inherent inaccuracy of the difference equation 
calculation with highest frequencies (i.e., with 
insufficient sample frequency). The linearity starts to 
degrade noticeably after about 5 kHz, and beyond 20 
kHz the generated vibrations tend to become unstable 
(dashed line). 

 
Figure 3. Linearity of difference equation calculation 
as the spring constant k and frequency f increase 
(sample frequency=44.1kHz) 

 The author composed his work Fether Lyre (2003-
2004) with an environment specifically developed for 
this purpose, and which he named MAL-d (Modular 
Audio Laboratory (development environment)). Sound 
examples, and more information about the synthesis 
environment, including the C++ source code, can be 
found at: 

http://www.karivakeva.com/lyre.htm 

5. FURTHER WORK 

One thing to study further is, for example, increasing 
the practical modulation depth (i.e. frequency variation 
range)1. 

Another thing to study is whether it could be possible 
to modify the current implementation so that, when you 
have calculated one sample segment that goes beyond 
subsequent output audio sample point(s) in time, you 
could also be able to recalculate the further end of the 
segment according to subsequent FM event(s), i.e. 
dynamic segment (sample) calculation. 

Also other “closed-space” or “boundaryless” 
topologies could be experimented, e.g. the hypercube, 
the 24-cell, and the 600-cell2. 
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