
MAL-d – A Resonator Element Synthesis System 

Kari Vakeva 
kejv@helsinkinet.fi 

http://www.karivakeva.com 
  
 

 
Abstract 

MAL-d sound synthesis system is able to model vibrating 
systems. It is based on the differential equations of a 
mechanical mass-spring vibrating system. The oscillator 
may be set to motion with various excitation signals. System 
consists of many interconnected oscillators. When the 
oscillators are excited with continuous audio signals, they 
may be better called resonators. The continuous excitation 
causes so-called forced vibrations, which are non-
harmonic. The interconnections between the resonators 
modulate their oscillating frequency, thus making the 
synthesized audio signal livelier. The results show that the 
resonator synthesis provides a tool for music creation. 

1 Introduction 
In the beginning of the year 2003, I started to develop a 

sound synthesis program for my needs as a computer music 
composer. Primary requirements were ability to model 
vibrating objects and simplicity. This led to think about 
having an array of vibrating elements interconnected to each 
other in some way. The interconnections are an analogy of 
real objects consisting of particles that are attached to each 
other, and, when an object is under vibrating state, the 
particles push or pull each other that cause tensions that 
change the vibration conditions of the particles. Therefore, I 
planned to make the elements in the synthesis system to 
have modulation inputs and outputs that can be connected to 
selected “neighbor” elements. The topology (selection) of 
interconnections may be in one dimension (like strings), in 
two dimensions (plates) or in any number of dimensions 
(e.g. a cube, a hypercube or, say, a 120-cell). The system 
should be modular and extensible. The building blocks 
should be so elementary that you can build various sound 
synthesis applications from them, which consist of vibrating 
elements. The starting point was physical modeling, but the 
developed method did not need to be orthodox because, in 
music, only the sounding result matters. 

2 The Oscillator 
The basic part of the system is an oscillator model. The 

vibration of the oscillator is modeled according to the 
familiar differential equation of mechanical vibrations: F = 
- k y, where m is the mass, k is the spring constant, and F is 
the force produced by the displacement (Fletcher and 
Rossing 2000). Figure 1 below shows the used analogy to 
basic physical vibration. 

Figure 1. One-dimensional Mass-Spring Vibrating System. 

In the figure, v expresses the velocity. The detail 
implementation algorithm is defined in Appendix 1. 

Note that one oscillator is able to produce only one 
frequency at a time. Therefore, for a spectrum of sound, you 
need to combine many of these oscillators. 

3 The Excitation 
Before an oscillator oscillates, it must be set to motion. 

The signal that sets it to motion – or keeps in motion – is 
called excitation. The excitation signal can be e.g. an 
impulse or continuous function like output of other 
oscillators or white noise. 

For percussive effects, an impulse or a short burst of 
noise is most suitable. This can cause e.g. guitar, xylophone 
and bell like sounds. - Oscillations without external forces 
are called free vibrations. The vibration is harmonic 



(sinusoidal, at least with small vibration amplitudes and 
without damping). 

A continuous excitation is suitable for e.g. a weird kind 
of filtering of a sound signal. One way is to have a deep 
vibrato control signal connected to modulation inputs of a 
set of low frequency oscillators, and excite them by a 
musical signal. The vibrato helps to excite more oscillators, 
because oscillators are most sensitive to excitation witch 
their own oscillating frequency. (Vibrato also reduces risk 
of over excitation that could cause the oscillation increase 
infinitely.) - Oscillations with external forces are called 
forced vibrations. In this case, the vibration can be non-
harmonic. 

4 The Modulation 
The oscillator elements are interconnected to some other 

elements with frequency modulation inputs/outputs. These 
connections can be either bi-directional or unidirectional. At 
the beginning there was a problem that caused the 
oscillation to “explode” to chaotic noise if there was even a 
small amount of modulation, but that was solved by keeping 
the spring constant k and mass m unchanged all time and 
“modulating” the time, instead, what makes it stable – see 
more in (Vakeva). 

The chaotic oscillation was, though, so charming that I 
used that, too, in my composition Fether Lyre. 

5 Results 
The synthesized sound was quite dull if there was 

neither modulation nor any other “noise” components, like 
there is in a real instrument sound. Harmonic series sounds, 
in same phase, produced a machine-like sound similar to a 
ramp generator’s sound (which nobody will take for a 
guitar!). However, when phases of the partials were e.g. 
randomized, and some inter-modulation added, the sound 
became lively like a guitar sound – neither dull nor 
machine-like any more. 

Some of the sounds that the synthesis system has 
produced so far have resembled the following physical 
instruments: 

‘Guitar’ A quite realistic sounding plucked string 
instrument. 

‘Bell’ A struck metal sound. 
‘Wood’ A struck wooden object sound. 
 
The synthesis system was also successfully used to 

various, sound filtering, resonator arrays with continuous 
excitation. 

Listen to the composition Fether Lyre and other samples 
produced by the system at 

 
 http://www.karivakeva.com/lyre.htm 
 

Used topologies, so far, are: one-dimensional (line), 
120-cell and 600-cell.1 

6 The Synthesis System 
I named the developed sound synthesis system as MAL-d 

(Modular audio laboratory – development environment). 
There are auxiliary features in addition to the oscillator 

elements. For example the following audio functionalities: 
reverbarator, automatic dynamics compressor, envelope 
generators, file input/output, variable rate file input, flanger, 
pitch bending, etc., and non-audio functionality like the120-
cell topology methods. Moreover, the system is all the time 
evolving as I compose (and probably I will never be fully 
satisfied). Nevertheless, the basic building blocks are 
capable for many more applications to come. 

7 Further work 
The experimentation has just begun. There are many 

possibilities yet to be found. Particularly, I am currently 
interested in the synthesis of noisy sounds. The damped, 
noisy, forced vibrations will be studied more in the future. 

Appendix 
The Differential Equation. The equation (1) below 

shows the physical law of one-dimensional vibration: 
 

F = - k y     (1) 
 
When we mark acceleration with ÿ we can express the 

basic law of dynamics as 
 

m ÿ – F = 0.     (2) 
 
Free vibrations. The basic reference model above 

showed the situation when the motion has been started and 
there are no resisting (or re-exciting) forces. Then the 
motion continues as pure harmonic (sinusoidal) motion of 
constant amplitude that is called free vibration. 

 
Forced vibrations. If there are forces affecting to the 

oscillating system during its vibration, the motion is not 
purely harmonic, and what is called forced vibration. 

 
The Difference Equation. For the discrete-time version 

of the equation, (i.e. the implementation algorithm), we 
obtain2 that the displacement force is 

                                                           
1 A special property of ”boundariless” topologies, like the 
hypercube and the 120-cell, is that all elements have the same 
number of neighbors. Therefore, you can apply a similar method to 
each element. 
2 (To save space, some steps about how we arrive to these final 
(optimized) equations (3), ..., (6) are left out - as that is not the 
subject of this paper.) 



 
f = - k y[n-1] + e     (3) 

 
where k is the spring constant, y[n-1] is the displacement 
and e is the external excitation force; furthermore, we get 
the acceleration as 

 
a = f / m     (4) 

 
where m is the mass; also we get the recalculated velocity 
(in displacement units per sampling interval) to be 

 
v[n] = d v[n-1] + a    (5) 

 
where d is the damping parameter (value range 0..1, the 
greater the value, the slower the decay); and, finally, we get 
the recalculated displacement numerical value to be 

 
y[n] = y[n-1] + v[n]    (6) 

 
(with the above mentioned assumption that the velocity is 
expressed in displacement units per unit-time, and the unit-
time is set equal to one sample interval, for efficiency of 
calculation). 

The external excitation force e is used for setting the 
vibrator system in motion, and it may be also used during 
the vibration to restrain the system from moving at its 
resonance frequency (or to keep the motion alive). 
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